

# Proof of the Conjencture 5.2 Taken From the Research Paper "Research Problems in Number Theory"

Amrin Sheikh1\*, Mohd Abbas H. Abdy Sayyed2

<sup>1</sup>Department of Mathematics, Government Vidarbha Institute of Science & Humanities, Amravati, VMV Road,

Amravati, Maharashtra, India

<sup>2</sup>S R Engineering College, Ananthasagar, Hasanparthy, Warangal, Telangana, India

#### ABSTRACT

The conjecture is taken from the research paper "Research problems in Number Theory" published by Nguyen Cong Hao, Imre K'atai and Bui Minh Phong in the year 2014, that elaborated the concept of additive function, multiplicative function. The conjecture that is proved herein, is deduced for k = 1 from the Wirsing's Theorem that says any real valued multiplicative function/modulus < 1 has a mean value or its limit exists. In this paper, we proved the conjecture 5.2 from the same paper in a simplified way using some basic concepts of arithmetic. **Keywords :** Additive Function, Logarithmic Series, Multiplicative Group.

### I. INTRODUCTION

### Additive functions (mod 1)

Let T = P/Z. We say that  $F \in A_T$  (= set of additive functions mapping into *T*) is of finite support if  $F(p^{\alpha}) = 0$  holds for every large prime *p*.

Let  $F_0, F_1, ..., F_{k-1} \in A_T$ , and

$$L_n(F_0,...,F_{k-1}) := F_0(n) + F_1(n+1) + ... + F_{k-1}(n+k-1)$$

## **Conjecture:**

If 
$$F_{v} \in A_{T}$$
  $(v = 0, ..., k - 1),$   
 $L_{n}(F_{0}, ..., F_{k-1}) \rightarrow 0$   $(n \rightarrow \infty),$ 

then there exist suitable real numbers  $\tau_0, ..., \tau_{k-1}$  such that  $\tau_0 + ... + \tau_{k-1} = 0$ , and if  $H_j(n) \coloneqq F_j(n) - \tau_j \log n$ , then

$$L_n(H_0,...,H_{k-1}) = 0$$
 (*n* = 1,2,...).

#### **Proof of the conjecture**

$$L_{n}(F_{0},...,F_{k-1}) \coloneqq F_{0}(n) + F_{1}(n+1) + ... + F_{k-1}(n+k-1)$$

$$F_{v} \in A_{T} \quad (v = 0,...,k-1),$$

$$L_{n}(F_{0},...,F_{k-1}) = 0 \qquad (n \to \infty),$$
i.e.  $L_{n}(F_{0},...,F_{k-1}) = F_{0}(n) + F_{1}(n+1) + ... + F_{k-1}(n+k-1) = 0$ 
(1)
Define that

 $F_0(n) = \tau \log n \pmod{1}$ , which is restricted to  $F_0(n) = \tau \log n$  for a continuous homomorphism from  $R_x$  (=multiplicative group of positive real numbers) to N.

Then (1) implies,

$$\begin{split} L_n(F_0, \dots, F_{k-1}) &= F_0(n) + F_1(n+1) + \dots + F_{k-1}(n+k-1) \\ &= \tau_0 \log(n) + \tau_1 \log(n+1) + \dots + \tau_{k-1} \log(n+k-1) \\ &= \log(n)^{\tau_0} + \log(n+1)^{\tau_1} + \dots + \log(n+k-1)^{\tau_{k-1}} \end{split}$$

by Logarithm Laws,

$$= \log \left[ n^{\tau_{0}} (n+1)^{\tau_{1}} \dots (n+k-1)^{\tau_{k-1}} \right]$$

$$= \log \left[ n^{\tau_{0}} n^{\tau_{1}} \left( 1 + \frac{1}{n} \right)^{\tau_{1}} \dots n^{\tau_{k-1}} \left( 1 + \frac{k-1}{n} \right)^{\tau_{k-1}} \right]$$

$$= \log \left[ n^{(\tau_{0} + \dots + \tau_{k-1})} \left( 1 + \frac{1}{n} \right)^{\tau_{1}} \dots \left( 1 + \frac{k-1}{n} \right)^{\tau_{k-1}} \right]$$

$$= \log n^{(\tau_{0} + \dots + \tau_{k-1})} + \log \left[ \left( 1 + \frac{1}{n} \right)^{\tau_{1}} \dots \left( 1 + \frac{k-1}{n} \right)^{\tau_{k-1}} \right]$$

$$= \left( \tau_{0} + \dots + \tau_{k-1} \right) \log n + \log \left[ \left( 1 + \frac{1}{n} \right)^{\tau_{1}} \dots \left( 1 + \frac{k-1}{n} \right)^{\tau_{k-1}} \right]$$
(2)

Since, function is restricted  $R_x$  to N , i.e. for  $n = 1, 2, 3, ..., \infty$ .

$$\log n = 2\sum_{n=1}^{\infty} \frac{1}{2n-1} \left(\frac{n-1}{n+1}\right)^{2n-1}$$
  
$$\therefore \log n = 2\left[\frac{1}{1} + \frac{1}{3} \left(\frac{n-1}{n+1}\right)^3 + \frac{1}{5} \left(\frac{n-1}{n+1}\right)^5 + \dots + \frac{1}{2(k-1)-1} \left(\frac{n-1}{n+1}\right)^{2(k-1)-1} + \dots + \infty\right]$$
  
$$\therefore \log n = 2\left[1 + \frac{1}{3} \left(\frac{1-\frac{1}{n}}{1+\frac{1}{n}}\right)^3 + \dots + \frac{1}{2(k-1)-1} \left(\frac{1-\frac{1}{n}}{1+\frac{1}{n}}\right)^{2(k-1)-1} + \dots + \infty\right]$$
(3)

substituting equation (3) in equation (2), we have

$$L_n(F_0,...,F_{k-1}) = F_0(n) + F_1(n+1) + ... + F_{k-1}(n+k-1)$$

$$(\tau_0 + \ldots + \tau_{k-1}) 2 \left[ 1 + \frac{1}{3} \left( \frac{1 - \frac{1}{n}}{1 + \frac{1}{n}} \right)^3 + \ldots + \frac{1}{2(k-1) - 1} \left( \frac{1 - \frac{1}{n}}{1 + \frac{1}{n}} \right)^{2(k-1) - 1} + \ldots + \infty \right] \\ + \log \left[ \left( 1 + \frac{1}{n} \right)^{\tau_1} \ldots \left( 1 + \frac{k-1}{n} \right)^{\tau_{k-1}} \right]$$

Applying  $n \to \infty$ , we get

$$(\tau_0 + \dots + \tau_{k-1})2\left[1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{2(k-1)-1} + \dots + \infty\right] + \log(1) = 0$$

=

$$:: L_n(F_0, ..., F_{k-1}) \to 0 \qquad (n \to \infty),$$
  
$$:: (\tau_0 + ... + \tau_{k-1}) 2 \left[ 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + ... + \frac{1}{2(k-1)-1} + ... + \infty \right] + 0 = 0$$
  
$$:= (\tau_0 + ... + \tau_{k-1}) 2 \left[ 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + ... + \frac{1}{2(k-1)-1} + ... + \infty \right] = 0$$

Since,

$$2\left[1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{2(k-1)-1} + \dots + \infty\right] \neq 0$$
  
$$\therefore (\tau_0 + \dots + \tau_{k-1}) = 0$$
(4)

Also,

$$L_n(H_0,...,H_{k-1}) = H_0 + H_1 + ... + H_{k-1}$$
 (n = 1,2,...).

Defined as,

$$H_{j}(n) \coloneqq F_{j}(n) - \tau_{j} \log n, \qquad \text{(by statement)}$$

$$L_{n}(H_{0},...,H_{k-1}) = H_{0} + H_{1} + ... + H_{k-1} \qquad (n = 1,2,...).$$

$$L_{n}(H_{0},...,H_{k-1}) = [F_{0}(n) - \tau_{0} \log(n)] + ... + [F_{k-1}(n+k-1) - \tau_{k-1} \log(n+k-1)]$$

Logarithmic terms of above equation leads to the following form, from the above explanation,

$$\begin{aligned} \tau_0 \log(n) + \ldots + \tau_{k-1} \log(n+k-1) &= (\tau_0 + \ldots + \tau_{k-1}) 2 \left[ 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \ldots + \frac{1}{2(k-1)-1} + \ldots + \infty \right] \\ L_n(H_0, \ldots, H_{k-1}) &= \left[ F_0(n) + \ldots + F_{k-1}(n+k-1) \right] \\ &- (\tau_0 + \ldots + \tau_{k-1}) 2 \left[ 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \ldots + \frac{1}{2(k-1)-1} + \ldots + \infty \right] \end{aligned}$$

From (1) and (4),  $L_n(H_0,...,H_{k-1}) = [0] - (0)$   $L_n(H_0,...,H_{k-1}) = 0$ Thus, the conjecture is proved.

II. REFERENCES

 Nguyen CH, Imre K and Bui Minh P. (2014). Research Problems in Number Theory. Annales Univ. Sci. Budapest., Sect. Comp. 43: 267-277.